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Abstract. Cells and organisms are remarkably robust: they alter the variety and
levels of expressed genes and proteins in response to environmental stimuli, in-
cluding temperature, chemicals, and the stiffness of their surroundings. Ultimately
changes in gene and protein expression can result in a distinct phenotypic state,
which in some cases is maintained over multiple generations; the ability to pass
on a particular phenotypic state to progeny cells is critical for differentiation.
Moreover, epigenetic regulation of phenotype is also thought to provide an evolu-
tionary advantage for a population of cells adapting to a fluctuating environment
on faster timescales than the occurrence of genetic mutations. However, simple
methods to study patterns of gene and protein expression on multi-generational
timescales are sparse. Here we describe a technique to study lineages of single
cells over multiple generations using a microfluidic device; this reveals patterns of
expression where protein levels are correlated across multiple generations. Such
quantitative information of protein expression in the context of pedigree remains
hidden when studying the population as an ensemble.

1 Introduction

The life of a cell is random. A cell faces unpredictable environmental changes, such as fluctua-
tions in temperature, nutrient concentrations, and pH. Within the cell many genes are present
only in one or few copies, thus the biochemical reaction of transcribing a single gene involves
small numbers of molecules, and is inherently stochastic (Fig. 1). Fluctuations in the concen-
tration of proteins and regulators involved in gene expression thus give rise to variability in
levels of mRNA, and consequently the numbers of proteins that are produced. Stochasticity
in protein expression is elegantly visualized by engineering bacteria cells to express both red
and green proteins; because levels of proteins fluctuate over time, some cells appear red, others
green, and some are yellow [1] (Fig. 1(b,c)). Cell-to-cell variation in protein expression is also
described in many other systems, including yeast and mammalian cells [2-6].

In contrast to the stochastic nature of gene expression, the cell is ordered in both space
and time. Higher-order structures such as membranes, filaments, and networks provide internal
structure and organization, which is critical for the structure and mechanical properties of cells.
For example, cytoskeletal proteins assemble into filaments and networks that provide the cell
with mechanical resilience to physical forces [7]. Subcellular organization is also essential for
many dynamic processes in the cell, including cell division, motility, and regulation of gene
expression via higher-order structures in the nucleus. For example, chromatin is organized in
such a way that groups of genes are silenced or activated in response to external cues; global
changes in gene expression are initiated during stress response [8] or differentiation [9]. Moreover,
cells themselves form higher-order structures, assembling into tissues, organs, and organisms.
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Fig. 1. Biochemical reactions of protein expression. A transcription factor protein binds to
DNA; the gene is transcribed to yield mRNA; the mRNA is then transported out of the nucleus into
the cytoplasm where it is translated into protein. As many genes are only present in one or very few
copies within the nucleus, there is some inherent stochasticity in the expression of genes and proteins,
which results in (b) varying levels of proteins over time. (c) Bacteria cells engineered to express both
a red and green fluorescent protein under the identical promoter show fluctuations in protein levels
over time: some cells are red, some are green, and some are yellow as relative protein levels vary.
Figures (b) and (c) are reprinted with permission from [1].

Cell-to-cell variation in protein expression levels can thus result from stochasticity in pro-
tein expression, in addition to other factors such as differences in higher-order chromatin struc-
ture. Thus, cells that have the same genotype may have different phenotype (Box 1). For
example, even though a population of single yeast cells contain the exact same DNA, and
are growing in the exact same environment, they express markedly different levels of proteins
(Fig. 2). This can be seen by imaging fluorescently-labeled proteins, where the protein levels
are proportional to the fluorescence intensity of the cell. Phenotypic variation is also evident in
the human body: each cell is genetically identical, yet the properties of the liver differ vastly
from the properties of bone. Such differences between cells result when stem cells differen-
tiate and achieve a distinct phenotypic state that is maintained and passed on to progeny
cells.

2 A brief introduction to epigenetic inheritance

The ability to pass information on to progeny cells in a non-genetic way is called epigenetic
inheritance. Inheritance of a particular state results when a certain phenotype is maintained on
timescales longer than the generation time of the cell. One way to regulate the phenotypic state
is through the higher-order chromatin structure: genes are less transcriptionally active when
tightly packed into a silenced heterochomatin state, compared to when loosely packed in a form
accessible to transcription factor proteins [10,11]. A phenotypic state can also be propagated
over multiple generations via biochemical networks such as feedback loops. Another possible
epigenetic mechanism involves protein aggregation, whereby misfolded proteins are passed on
to progeny cells. Termed prions, this form of epigenetic inheritance underlies bovine spongiform
encephalopathy, or mad cow disease. [Other references provide a more comprehensive overview
of epigenetic mechanisms of inheritance [12,13].]

Why does phenotypic inheritance matter? Robust and reproducible change in phenotypic
state is critical in fundamental biological processes such as differentiation. Phenotypic inheri-
tance may also be important for single-celled organisms such as yeast or bacteria: the ability to
epigenetically regulate genes involved in stress-response may enable cells to change phenotype
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Fig. 2. Persistence time for protein expression varies. Lineages of cells expressing three different
proteins reveals timescales of phenotypic variation. A: pPho84-GFP, B: Hsp12-GFP, and C: Rps8b-
GFP. (a) Inverted GFP-fluorescence images, and (b) Cells after growth in lineage chambers. Lineages
of cells expressing pPHO84-GFP in intermediate phosphate concentration (200 uM phosphate), show
lineages that are expressing either high or low levels of protein, suggesting that a certain phenotypic
state is maintained during at least five divisions. Smaller clusters of 2—6 cells with similar levels of
Hspl2-GFP reveal that levels of this heat shock protein change on a faster timescale. Levels of the
ribosomal protein, Rps8b-GFP, remain relatively constant along lineages. Cluster Index (CI) distrib-
utions for cells expressing (c) pPHO84-GFP; (d) Hspl2-GFP; (e) Rps8b-GFP. Scale, 10 um. Adapted
from [30].

and adapt on shorter timescales than required for genetic mutations [14]. In yeast, typically
about one in 10° to 10® cells acquires a genetic mutation [15], so the ability to alter phenotype
in non-genetic ways, and pass this information on to progeny cells, may offer an evolutionary
advantage for a population of cells in a fluctuating environment. While this is an interesting
idea, it has not been rigorously shown experimentally.
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Box 1. Genotype and Phenotype.

(P eel

Genotype can be thought of as inherited instruction, like a recipe to make a cake or
assemble a model airplane. The ‘instructions’ encoding the composition of a cell are
contained in its DNA.

Phenotype is the physical manifestation or observable characteristics of the genotype.
For example, the cake made by following the recipe, the assembled airplane, or the cell.

3 Yeast: Model system

To study questions of phenotypic variation over multiple generations, yeast provides an excel-
lent model system. Compared to stem cells, the budding yeast Saccharomyces cerevisiae is much
simpler to culture in the laboratory. Moreover, it is a very simple eukaryotic system and cells
divide about every 90 minutes, which makes it feasible to study many generations in a single
experiment. Because yeast is a unicellular organism, it responds to fluctuations in its environ-
ment, and alters its protein expression accordingly. Single yeast cells also grow into colonies that
consist of 10% to 10 cells. In the form of colonies, it is easy to visualize multiple generations of
cells, and study factors involved in phenotypic inheritance: for example, colonies of yeast cells
have been used to study inheritance by prions [16] and chemical modifications of chromatin
[17]. Last but not least, yeast cells are extremely easy to genetically manipulate. Genes can
be deleted, or modified so that proteins are tagged with a fluorescent protein for visualization
[18]; entire libraries consisting of deleted and fluorescentally-labeled proteins are commercially
available. Moreover, fluorescentally-tagged proteins enable protein levels to be monitored by
fluorescence intensity.

4 Studying cell-to-cell variations in protein levels

Using fluorescence microscopy, nearly each protein of the yeast proteome can be visualized [18];
this reveals marked variation in the expression levels of particular proteins. To determine a
full distribution of protein levels for thousands of cells, flow cytometry is a powerful technique:
individual cells are flowed past a laser and detector, allowing interrogation of protein levels in
thousands of cells within seconds. Using this method, protein level distributions for the entire
yeast proteome have been acquired [19,20]. While this method provides insight into stationary
distribution patterns for different proteins, the information is obtained at only a single time
point. Sequential runs allow for data collection at multiple timepoints, however, it is impossible
to follow individual cells in time. Yet there are many critical questions that require studying
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cells over time: what is the frequency of protein level variations over multiple generations? How
does expression depend on cell age, history, or pedigree? How does a population of single cells
alter their protein expression in response to environmental change?

To track single cells over time, a common method is to place the cells on a gel pad containing
nutrients, and then image the cells by microscopy as they grow. However, cells grow out of
the focal plane, limiting the number of generations that can be imaged. Also, media cannot
be flowed through such a chamber. Another way to study multiple generations of cells is to
grow a single cell into a colony of cells. While this method is useful for elucidating epigenetic
mechanisms of inheritance, the environment throughout the colony is extremely heterogeneous:
there are gradients in the colony height, density of cells, and nutrient concentration. The colony
is thus a complex environment, and it is complicated to follow single cells within a colony.
To overcome these issues, various flow devices provide media exchange and enable cells to be
maintained in a single focal plane during growth [21-27]. However, many of these devices require
sophisticated fabrication techniques such as multilayer fabrication with valves [22,24], channel
height differences [23], or membranes [21,27]. Furthermore, the initial placement of cells cannot
be controlled, which limits the number of lineages that can be studied in a single experiment
and reduces the statistical power of these techniques. To robustly and repeatedly trap and
culture single cells requires a device that is easy to fabricate and simple to use; this would
enable multiple individual cells and their lineages to be spatially organized, as well as data to
be collected over many generations of cells in a single experiment.

5 Engineering a microfluidic device for trapping single cells

To follow lineages deriving from individual yeast cells, we developed a device for trapping and
culturing single yeast cells [30]. The device is made using soft lithography, and is molded out of a
silicon-based polymer (polydimethylsiloxane, PDMS). Using this method, computer-generated
designs are inexpensively and rapidly fabricated into devices of any geometry with feature
sizes down to microns [28]. The optimal device for trapping single cells, and containing their
progeny cells in individual chambers, must fulfill certain geometric requirements. For example,
to spatially organize the microcolonies that derive from single cells and force them to grow in a
single focal plane, the growth chambers should have a square cross-section that is the width and
height of an average single cell, 5 um, with a constriction of less than 5 pm to trap individual
cells. To study multiple lineages in a single experiment, the device should enable simultaneous
trapping of many single cells.

To determine the optimal device geometry, we use lumped element modeling, a method that
is commonly used to analyze simple electrical circuits. We consider the volumetric flow rate
through the channels, @), which is analogous to electrical current; the pressure drop, AP, that
is analogous to the voltage drop; and the remaining factors which describe the fluidic resistance
that depend largely on the channel geometry. Beside the constricted trapping chamber, we
engineer a bypass channel: When the trapping channel is empty, the flow through the bypass
channel, Q2, is less than the flow through the trapping channel, 1, but when a single cell
is present in the channel, @); is greater than )7 so that the majority of the fluid volume,
and therefore subsequent cells, flow through the bypass channel and exit the device [29]. We
determine the device dimensions by using the Hagen-Poisseuille equation, which describes the
relationship between the flow, @, fluidic resistance, R, and channel geometry, where h, w, [ are
channel height, width, and length, for the growth chamber (1a), constriction (1b), and bypass
(2) channels respectively:

Q2 Rig+ Ry h3ws ( l1a l1p > (1)

Q1 Ry Iy

Thus when a cell flows into the growth chamber and becomes trapped, the fluidic resistance,
R, increases so that subsequent cells preferentially flow around the chamber and exit the
device. These flow patterns enable preferential trapping of single cells, and allow us to achieve
an array with a higher proportion of single cells than can be achieved by random loading that is

+
hi’awla h?bwlb



76 The European Physical Journal Special Topics

described by Poisson statistics [30]. Importantly, there is still some flow through the chamber;
the cells are round while the chambers are square, so we are able to perfuse fluid through the
device, enabling cells to divide over the course of the experiment. By fabricating an array of
50 chambers in one device, we can trap multiple cells and monitor their lineages in a single
experiment [30].

6 Fluctuations in levels of different proteins

Using this technique, we resolve variations in protein levels over time for three representative
proteins. Protein A, a phosphate transporter (Pho84), shows bimodal distribution at interme-
diate phosphate concentrations. When cells are starved for phosphate, the expression of this
high-affinity phosphate transporter is upregulated in order to bring more phosphate into the cell
and increase the intracellular phosphate concentration. By contrast, Pho84 expression is down-
regulated when phosphate is plentiful, and lower-affinity phosphate transporters are expressed
[31]. The bistable behavior observed at intermediate phosphate concentrations is thought to re-
sult from an interplay between positive and negative feedback loops in the phosphate-response
pathway [31]; such feedback mechanisms are critical for achieving homeostasis, and are ubiqg-
uitous motifs in cellular systems to either amplify or dampen signals in biochemical pathways
[32-34]. In the case of Pho84 expression, the interplay between feedback loops results in some
cells which primarily express the high-affinity transporter, and others that express predomi-
nantly the low-affinity transporters [31]. However, the origins of this variation are not entirely
understood. Moreover, the number of divisions over which a cell maintains a particular phe-
notype cannot be determined using flow cytometry. By growing cells in the lineage chamber
device, we observe lines of cells that have high or low expression levels (ON or OFF phenotypic
state), indicating a particular phenotype can be maintained over multiple generations. Some
lineages show clusters of cells with similar phenotype due to a change in expression state as
the cells grow and divide. To quantify the size of clusters, we count the number of adjacent
cells that share similar phenotype, and define the cluster index, CI, as the number of adjacent
cells of similar phenotype divided by the total number of cells in a lineage (Box 2). Thus, lines
that are entirely ON or OFF have a cluster index, CI =1 (Fig. 2(c)). We also observe smaller
clusters of cells that may result when cells in a single lineage switch phenotype, and occasionally
squeeze by each other as they divide within the channel.

Box 2 - Cluster Index (Cl) Analysis.
Growing cells in lineage chambers enables space to provide a measure of time: cells that are
most closely related genealogically are located most proximally within a channel.

Number of Adjacent Cells with Similar Intensity
Total Number of Cells in Lineage
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Next, we investigate two proteins that exhibit unimodal distributions, but have different
variances. Protein B is a heat shock protein (Hspl2), which shows a wider distribution as
compared to Protein C, a ribosomal protein (Rps8b). The width of the distribution is expressed
quantitatively by the coefficient of variation, CV = variance/mean; for B (Hspl2), CV =
118, while CV = 35 for C (Rps8b). Perhaps not surprisingly, cells expressing Protein C, the
ribosomal protein, show lineages of cells that all have similar phenotype, reflecting the tight
distribution observed in bulk (Fig. 2(e)). By contrast, cells express varying levels of Protein B,
the heat shock protein, and it cannot be determined from a stationary distribution how quickly
protein levels fluctuate. To address this question, we culture lineages of cells expressing Protein
B, the heat shock protein, and observe clusters of cells within single lineages that are bright
or dark (Fig. 2(d)). Clusters of cells with similar protein levels typically span (2-6) cells. The
C1 distribution reveals that cells do not maintain phenotype for the entire lineage, suggesting
rather that protein levels change frequently as cells grow and divide. While Protein B (Hsp12)
has 4.5 x 10% molecules per cell [35], other stress-related proteins with higher copy number, such
as an enzyme that is involved in glucose metabolism, Hxkl with 4.8 x 10* molecules per cell,
show similar clusters of bright and dark cells in lineages, as well as similar C'I distributions.
These observations suggest that expression variation is not linked to copy number, but rather
to protein function [19,20].

To follow how protein levels change over time, we track the fluorescence intensity of indi-
vidual cells as they grow, acquiring images at 10-minute intervals and analyzing them using
custom software. We then construct a pedigree map, which documents the familial relations of
each and every cell, as well as exactly how many times each cell has divided, or its’ replicative
age (Fig. 3). Plotting the fluorescence intensity levels of each cell divided by the population
mean reveals fluctuations in protein levels in single cells over time. Levels of protein C, the
ribosomal protein, change very little over time, consistent with the role of this “housekeep-
ing” protein in essential cell functions. By contrast, levels of the heat shock protein, protein
B, show non-periodic fluctuations, with up to 2.5 x increases relative to the population mean.
These bursts in protein levels occur under steady-state conditions, in the absence of any applied
stress. Each burst is followed by an exponential decay, which can be attributed to a decrease in
the concentration of fluorescent protein upon cell growth and division, as well as degradation of
mRNA and proteins. Correlation analysis reveals no statistically significant correlation between
bursts and replicative age of the cell; instead, the bursts appear to be random. Interestingly,
the majority of bursts in protein levels (57%) occur simultaneously in mother and daughter
cells; the probability that these correlated bursts are due to random fluctuations is very low
(x2, p << 0.001) [30]. Similar behavior is also observed for the stress-response protein, Hxk1.

What causes these shared expression patterns? Protein expression involves transcription to
produce mRNA, followed by translation to generate proteins (Fig. 1). A burst in transcription
may thus result in a pool of mRNA that is passed onto progeny cells as they divide, which
decays on timescales comparable to cell division. Such non-periodic bursts in expression are
observed in living systems including bacteria [6], during differentiation in Dictyoselium [39],
and following DNA damage in mammalian cells [40]; they are also predicted from mathemati-
cal models of transcription together with stationary distributions obtained by flow cytometry
[36] and microscopy [2,37,38]. In addition to mRNA production rate, mRNA stability can be
altered in response to environmental stress [41]; the interplay between both transcript produc-
tion and degradation rates could thus be tuned to regulate protein expression levels, as well as
the timescale of phenotypic propagation. Similar expression behavior in mother-daughter pairs
could also result from a particular chromatin configuration that is passed on to progeny at cell
division, or fluctuations in chromatin structure between active and inactive states [2,4]. Using
molecular biology tools, such as deletion mutant strains, and mathematical modeling will help
to decipher the physical origins of this behavior.

Our results suggest that particular classes of proteins, such as those involved in stress re-
sponse, exhibit non-periodic fluctuations in protein expression. These observations are consis-
tent with hypotheses that cells tightly regulate the expression of housekeeping proteins with
essential functions [19,20]. The mechanism underlying differences in expression patterns among
proteins may be attributed to the architecture of the promoter sequence: while many stress-
response genes are enriched with a specific sequence motif (TATA box), which determines the
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Fig. 3. Dynamic lineage maps show temporal fluctuations in protein levels in the context
of pedigree. (a) Protein C: Rps8b-GFP; and (b) Protein B: Hsp12-GFP. Protein levels are normalized
to the mean fluorescence of the population. The genealogical identity of each cell is labeled in the image
(right) acquired at the endpoint. Reprinted with permission from [30].
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stability of the transcription factor complex, this motif is absent from promoters of essential
genes [42-44]. Enhanced binding between proteins and DNA could result in a larger number
of transcripts produced per binding event, or faster reinitiation of transcription. Other mech-
anisms could also explain the observed behavior. For example, the ribosomal protein studied
here, Rps8b, is a protein subunit; thus variations in its levels may be buffered by the assembly
into its multimeric form. Furthermore, changes in chromatin conformation may play a role in
regulating the expression of genes with stress-response function. While these are plausible ex-
planations for the observed differences in protein level variability between stress-response and
housekeeping genes, the extent to which these differences impart an evolutionary advantage
remains to be seen.

7 Conclusions and perspectives

A general understanding of the timescales of phenotypic variation across multiple generations
of cells, as well as the mechanisms underlying fluctuations in protein levels, requires systematic
investigation of many types of proteins in varying conditions. Since fluctuations in protein
levels of single cells remain masked in the ensemble average, methods to study protein levels
must address a population of single cells over time. Using the microfluidic technique to trap
individual cells described here, we demonstrate how lineages deriving from single cells can be
studied in parallel. We show that levels of different proteins fluctuate on varying timescales.
Moreover, we identify patterns in expression that extend across multiple generations, which
cannot be seen when studying a population of cells at a single time point. Understanding
the mechanisms by which cells can tune the timescales of protein fluctuations to generate
epigenetic inheritance will provide insights into fundamental biological questions ranging from
differentiation to adaptation.
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